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Thermal effectiveness of multipass plate 
exchangers 
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Abstract-Plate heat exchanger arrangements, with a constant number of streams per pass for each fluid, 
and uniform fluid distribution, are classified in terms of five basic parameters. A program based on the 
diagonalization of a system of linear differential equations is constructed for the numerical calculation of 
the thermal effectiveness of an arbitrary arrangement. An alternative program is developed in the limit of 
a large number of plates. A comparative analysis of the results obtained is performed. Basic trends are 

discussed, and the early onset of asymptotic hehaviour is pointed out. 

1. INTRODUCTION 

EVEN THOUGH plate heat exchangers (PHE) are 
becoming increasingly popular in various industrial 
applications, the literature on the subject of the cal- 
culation of the MTD or, equivalently, the thermal 
effectiveness of these arrangements, is rather limited 
[l-4]. Only very recently Shah and Kandlikar per- 
formed detailed calculations of single and multipass 
arrangements, in which the number of plates covers 
the practical range of applications [5, 61. In the first 
paper they revised in detail the existing literature, and 
reported calculations of the effectiveness and MTD 
correction factor F for configurations in which one 
fluid performs only one pass. In the second work, 
tabulations of similar results for the most common 
multipass geometries are given. 

This paper is, in some sense, complementary to those 
of Shah and Kandlikar. Whereas they focused on 
the most common configurations, and wrote separate 
programs for the step-by-step integration of the 
differential equations for each of them, we use a 
different numerical approach to set up a scheme that 
can handle an arbitrary ‘regular’ geometry, and per- 
form a comparative analysis of the various possible 
arrangements. As a necessary introductory task, we 
analyse in detail and classify all the geometries con- 
sidered, the parameters that uniquely define them, and 
the occasional degeneracies that force the effectiveness 
of two apparently different configurations to be the 
same. We do find complete numerical agreement with 
the results tabulated in refs. [5, 61, in all cases exam- 
ined. 

Throughout this work we use the standard assump- 

2. CLASSIFICATION OF ARRANGEMENTS 

The number of possible PHE configurations is quite 
large. In order to classify them systematically, we con- 
sider the array of parallel plates, numbered from 1 to 
N, shown in Fig. 1, in which fluids 1 and 2 flow 
through N+ 1 adjacent channels. 

Let J and K (with J ( K) be the number of passes 
of the two fluids. When J = K, we call fluid 1 the fluid 
in channel 1. For J < K, fluid 1 is the fluid which 
performs J passes. We restrict our analysis to regular 
configurations, in which the numbers n, and n2 of 
channels per pass for each fluid are constant. As a 
consequence of this, and of the fact that fluids 1 
and 2 alternate in neighbouring channels, there are 
limitations on the possible values of N, for given J 

and K. 

LA us examine first what odd values of N are poss- 
ible for given J and K. If N is odd, there is an even 
number of channels, and half of them are occupied by 
each fluid. Therefore, (N+ 1)/2 has to be sim- 
ultaneously divisible by J and K. Thus, the possible 
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of the heat capacity rates for all the channels of each Plate N . . . 3 2 1 
fluid, and negligible heat losses. FIG. 1. Definition of axes for an N-plate configuration. 

1983 



1984 A. PIGNOTTI and P. I. TAMBOKENEA 

NOMENCLATURE 

A heat transfer surface area [m”] R heat capacity rate ratio. c/C 
B matrix relating the z variables to stream ~dimensionless] 

temperatures [dimensionless] & & even- and odd-p-splittings, defined in 
c fluid 1 heat capacity rate [J s- ’ ‘C -- ‘1 equations (18) and ( 19) 
c Auid 2 heat capacity rate [J s -- ’ ‘C ‘1 [dimensionless] 
Ci heat capacity rate of stream in the ith U overall heat transfer coefficient 

channel [J s-r “C’] IWm -‘“c-‘l 
D tridiagonal matrix which appears in the t, t’ 

set of differential equations (7) 
inlet and outlet fluid 1 temperatures [“Cl 

T, T’ 
[dimensionless] 

inlet and outlet fluid 2 temperatures [“Cl 

t, temperature of ith stream [“Cl 
H matrix which relates the stream .Y dimensionless coordinate normal to the 

temperatures at z = 1 to those at plates 
z=o z dimensionless coordinate along the 

‘I number of passes of fluid 1 plates. 
[dimensionless] 

K number of passes of fluid 2 Greek symbols 
[dimensionless] A matrix resulting from the 

“M 
largest common factor of J and K 

least common multiple of J and K 
diagonalization of D [dimensionless] 

P relative flow parameter defined in 
N number of thermal plates Table I [dimensionless] 

[dimensionless] a sequence parameter defined in Section 2 
n,,nz number of channels per pass for fluids 1 [dimensionless] 

and 2 [dimensionless] r’, linear combinations of the stream 
NTU number of heat transfer units referred to temperatures ti f”C] 

fluid 1, UA/c [dimensionless] 4 countercurrent fraction parameter 
P fluid 1 thermal effectiveness, defined in equation (20) 

(t’ - r)/( T- t) [dimensionless] [dimensionless]. 

odd values of N are given by 

Ni=2iM-1, i= 1,2,3 ,_.. (1) 

where M is the least common multiple of J and K. We 

n’, = n, fiK 

/z; =n*+iJ, i= t,2,3 ,... 

N’ = N+2iJK 

say that an exchanger having a number of plates given 
by equation (1) belongs to the ‘odd-N sequence’, and 
assign to it a sequence parameter 0 = 1. 

The analysis for even values of N is somewhat more 
compiicated, because two possibilities arise. In the 
first one we have 

N=2(n,J--1)=2n,K (2) 

and fluid 1 is found in channels 1 and iV+ 1. These 
configurations belong to the ‘fluid-I-outside’ 
sequence, and are identified by D = 2. Alternatively, 
we may have 

N=2n,J=2(n,K-1) (3) 

in which case fluid 1 is in channels 2 and N. These are 
‘fluid-l-inside’ configurations, with o = 3. 

It can be proved that solutions of equations (2) and 
(3) with integer values of n,, n2, and N, exist if, and 
onIy if, the largest common factor M of J and K is 1, 
i.e. if M = JK [7]. In such cases, one solution with 
N < 2 JK can always be found. Given such a solution, 
additional ones are easily obtained with 

In summary, for given values of J and K, we can 
identify three sequences of possible N values, which 
increase in steps of 2M. The sequences are called odd- 
N (a = l), fluid-l-outside (0 = 2), and fluid-l-inside 
(g = 3). The cr = 1 sequence is present for all values 
of J and K. The even-N sequences are present only for 
J and K such that M = JK, and they are distinct, i.e. 
they do not simultaneously occur for the same value 
of N, except for J = K = I, in which case they 
coincide, and we need consider only the case c = 2. 

Each member of a sequence is therefore char- 
acterized by a set of compatible values of J, K, and 
N. There is often, however, more than one possible 
configuration for each of these sets of values, depend- 
ing on the relative direction of flow of the fluids 
throughout the exchanger. In order to analyse these 
possibilities, we have to specify in detail the geometry 
of the arrangements considered. 

For J = K we have chosen to call fluid 1 the fluid 
in channel 1. For J -c K and 0 = 1, fluid 1 is found 
either in channel 1 or N+ 1. In the latter case, if we 
renumber the plates backwards, calling plate 1 what 
was previously plate Ns- 1, and vice versa, we find an 
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equivalent aviation in which &lid 1 is in channel 
1. For cr = 2, we have already said that fluid 1 is 
necessarily in channel 1. Therefore, lktid 1 can always 
be assumed to be in channel 1, except in the G = 3 
configurations, in which case it is found in channel 2. 
In addition, we can assume that the fluid 1 stream in 
channel 1 or 2 is an inlet stream. Indeed, if it is an 
outlet stream, an equivalent configuration can be 
found using the property of flow reversibility, accord- 
ing to which the inversion of the direction of flow 
of both fluids does not alter the effectiveness of the 
a~angement [8]. 

Choosing as origin the end of plate 1 adjacent to 
the fluid 1 inlet, we draw a z-axis parallel to the direc- 
tion of flow along the plates, and an x-axis normal to 
the plates, as shown in Fig. 1. With the conventions 
discussed above, the flow pattern of fluid 1 through 
the exchanger is then uniquely determined by the num- 
ber of passes J and the number of plates N. There 
are, however, four different possible paths for fluid 2, 
depending on the comer of the diagram of Fig. 1 near 
which the fluid 2 inlet is located. These four possible 
configurations for given J, K, and N, are characterized 
by two features : 

(I) whether the overall ~nnection is parallel-cur- 
rent or ~o~tercu~ent (i.e. whether fluid 2, in pro- 
ceeding from one pass to the following one, moves in 
the increasing x-direction, as fluid 1 does, or in the 
opposite one) ; 

(2) whether the relative motion of fluids 1 and 2 
along the first plate is, again, parallel-current or coun- 
tercurrent. 

We identify these four possible relative flow com- 
binations by means of an integer relative flow par- 
ameter p. Table 1 shows the values assigned to p for 
the four possible combinations of relative flow. An 
example of the four possible confi~rations for 
(J, K) = (2,s) and N = IO is shown in Fig. 2. 

These four cases do not always have different effec- 
tiveness. It is obvious that, if J= 1, i.e. if fluid 1 
performs only one pass, the relative direction of flow 
of fluid 1 and fluid 2, in going from one pass to the 
next one, has no meaning. Therefore, the p = 1 and 4 
cases coincide, and so do cases p = 2 and 3. Moreover, 
it is easy to verify that, if N is even, and (K- J)/m is 
odd, cases p = 1 and 3 are equivalent, and so are 
p = 2 and 4. In order to reach this conclusion, flow 
reversal, and renumbering of plates in inverse order, 
have again to be performed. In the example of Fig. 2 
these transfo~ations lead from p = 1 to 3, and from 

Table 1. Definition of the relative flow parameter p for PHE 

P Overall relative flow First plate relative flow 

1 parallel-current parallel-current 
2 countercurrent countercurrent 
3 parallel-current countercurrent 
4 countercurrent parallel-current 

FIG. 2. Example of the four possible configurations, labeled 
p = l-4, for a (J, K) = (2,5) exchanger with ten plates. in 
this case, the two odd-p arrangements are equivalent, and 

the same is true for the even-p geontetiies. 

Table 2. Equivalent p values and m~tipljcity for all possible 
combinations of J, K, and N 

J W- JVm 

1 odd 
1 odd 
1 odd 
1 even 

>I odd 
>1 odd 
>i odd 
>l even 

N 

a, 
even 
odd 
all 
co 
even 
odd 
ail 

Fquivalent p 
values Multiplicity 

1~4~2~3 
1~4~2~3 : 
1=4, 2=3 2 
1=4, 2=3 2 
I=3, 2=4 
1=3, 2=4 22 

none 
none 

p = 2 to 4, and vice versa. In conclusion, Table 2 
shows what are the equivalent p values, and the mul- 
tiplicity, i.e. the number of different configurations, 
for all the possible combinations of values of N, J, 

and K, including the limit N + co. It should be noted 
that the multiplicity is the same for all N values in a 
given sequence, because it depends only on J, K, and 
the evenness or oddness of N, which are common to 
all members of a sequence. 

3. DETERMINATION OF THE EFFECTIVENESS 

We proceed in two steps in formulating and solving 
the differential equations which lead to the expression 
for the exchanger effectiveness. In the first stage, we 
write and diagonalixe the equations for the N+ 1 
channel temperature distributions, as functions of the 
dimensionless z-coordinate (0 d z < l), as if the 
streams were not connected to each other at the inlet 
and outlet ends of each channel. In the second stage, 
we introduce the connections as boundary conditions 
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of the solution. The effectiveness is then obtained by 
solving a linear system of algebraic equations. 

The differential equations for the first and last 
stream temperatures are 

c,(dt,/dz) = s,(t,--t,)UA/N (4) 

C.V+ , (dfiv+ I /dz) = s,v+ I C~.N - tN+ I 1 VAIN (5) 

whereas for the intermediate streams we write 

cj(dt,/dz) = $(tj_ , + t,+ , -2t,)VA/N, i = 2,. ., N. 

(6) 

In the equations above, Si is either 1 or - 1, depending 
on whether the ith stream flows in the direction of 
increasing or decreasing values of z. In matrix 
notation, the equations can be written as 

(N/NTU)[dt(z)/dz] = Dt(z) (7) 

where t(z) is a vector of components t,(z), t2(z), , 
tN+ ,(z), and D is a tridiagonal matrix, because equa- 
tions (4)-(6) only couple each unknown temperature 
to the neighbouring ones. Matrix equation (7) can 
be solved through a similarity transformation which 
diagonalizes D. Introducing the auxiliary temperature 
distributions r,(z), such that 

we substitute into equation (7) and obtain, using 
matrix notation 

(N/NT(Y) dr/dz = B- ‘DBT(z) = AT(Z). (9) 

We choose matrix B such that A is diagonal, and from 
the relation 

DB=BA (10) 

we verify that bi, the ith column of B, is an eigenvector 
of D with an eigenvalue equal to the ith diagonal 
element of matrix A. After obtaining the eigenvalues 
and eigenvectors through standard numerical tech- 
niques, the solution of equation (9) can be written as 

T(Z) = exp (NTUAz/N)r(O). (11) 

For the temperature variables at z = 1 we obtain 

with 

t(1) = H?(O) (12) 

H = Bexp (NTVAIN)B-‘. (13) 

Equation (12) is actually a set of N+ 1 algebraic 
equations relating the N+ 1 temperatures at z = 1 to 
the corresponding ones at z = 0. These equations have 
to be complemented by the specification of the inlet 
temperatures of the two fluids in their respective first 
passes, and additional equations stating that the inlet 
temperature for each stream of subsequent passes is 
the average of the outlet temperatures of the preceding 
pass. After elimination of all the intermediate tem- 
peratures, we are left with a linear relation for the 
outlet fluid 1 temperature as a function of the inlet 

ones for fluids 1 and 2. The effectiveness P is then 
obtained from 

P = (t’-f)/(T-f). (14) 

4. ASYMPTOTIC CALCULATIONS 

Consider a countercurrent exchanger with J = K 

= 1 and N plates. Streams 1 and N + 1 exchange heat 
with only one neighbouring stream, whereas each 
one of the other streams exchanges heat with two 
neighbours. This gives rise to ‘end effects’ which cause 
the temperature distributions of the first and last 
streams to differ from those of the middle streams. 
These effects propagate to a few streams away from 
the ends of the exchanger, and are responsible for the 
deviation of the exchanger effectiveness from that of 
a purely counterflow configuration. As the number 
of plates increases, the influence of these end effects 
tends to disappear, as discussed by Shah and Kand- 
likar for J = 1 [5]. 

Similar effects are found in multipass exchangers in 
the vicinity of the boundaries between consecutive 
passes of either fluid, and, again, for given J and K. 

disappear in the limit N -+ cc. In this asymptotic limit, 
the exchanger can be reduced to an assembly of com- 
ponents which are purely parallel or countercurrent 
exchangers. 

Consider, for example, a J = 4. K = 6, p = 1 ex- 
changer. Figure 3(a) shows the flow pattern of the 
two fluids, with indication of the pass boundaries. 
Not counting both ends of the exchanger, there are 
J- 1 = 3 boundaries for fluid 1. and K- 1 = 5 ones 
for fluid 2. Actually, because J and K are both mul- 
tiples of 2, in the middle of the exchanger we find a 
double boundary, where pass boundaries for both 
fluids coincide. In general, there are m - 1 such double 
boundaries, which divide the exchanger into m ‘prime 
segments’. Each of these segments has one inlet and 
one outlet stream for either fluid, and is coupled to the 
neighbouring segments. Depending on the evenness or 
oddness of the relative flow parameter p, this coupling 
is of the countercurrent series or cocurrent series type. 
The effectiveness of the whole exchanger can be 
obtained in terms of the effectiveness of the segments 
through well-known coupling formulae [9] 

P= 1- fi[l-(l+R)P,] /(l+R) 
( iI1 

(15) 
I= I 

for cocurrent series coupling, and 

for coupling of the countercurrent series type. For 
R = 1, equation (16) is substituted by 
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FIG. 3. (a) Flow pattern of a (J, K) = (4,s) exchanger with 
p = 1, in the limit of large N. (b) Decomposition of the same 
exchanger into two prime segments, each consisting of two 
parts which, in turn, are split into parallel-current (P) and 

countercurrent (C) components. 

‘= [jZl,pi/C1-pfl]/[l +$lpi/(1-p2)]. (17) 

Observe, however, that each prime segment is an ex- 
changer with the same heat capacity rate ratio of 
the overall exchanger, but a number of heat transfer 
units M times smaller. 

The determination of the effectiveness of each prime 
segment is performed by decomposing it into parts 
delimited by the fluid 1 boundaries. In Fig. 3(b) these 
boundaries within a segment are shown by vertical 
dashed lines. In the most general case, each of the 
component parts has one inlet and one outlet stream 
for fluid 1, but two inlet and two outlet streams for 
fluid 2. Thus, a generalized matrix formalism with 
3 x 3 matrices has to be used for the description of 
each part, and for coupling these parts to each other 
[I 01. Each part is in turn constitute by pure parallel- 
current or countercurrent components, plus nodes at 
which two streams merge into one, or one is divided 
into two. In the example of Fig. 3, the J =4, K = 6, 
p = 1 exchanger is split into two prime segments, each 
segment into two parts, and each part into two com- 
ponents. Such a reduction, with a variable number of 
constituents at each stage, can be done in the most 
general case, and was implemented into a computer 
program that performs it for arbitrary J, K and p, and 
provides the asymptotic value of the effectiveness in 
the limit of a large number of plates. 

5. RESULTS AND DISCUSSION 

The classification of PHE discussed in Section 2 
shows that a configuration is uniquely specified by the 
variables R and NTU, and the parameters J, K, N, 
and p. In addition, it can be identified as belonging to 
one of three distinct sequences, labeled by the par- 

ameter Q. We attempt here to establish the basic trends 
observed for the effectiveness as we scan these possible 
configurations. 

In the following, we often compare the effectiveness 
of two or more arrangements, for the same values of 
R and NTU, and different geometries. We know that 
changes in the geometry, such as in the number of 
passes, may alter the fluid velocities, and, therefore, 
the heat transfer coefficient and NTU. Such indirect 
consequences of changes in the geometry are not taken 
into account in the present analysis, and should be 
incorporated separately by the designer. 

Even though the dependence on the variables and 
parameters are intertwined, we single out the fol- 
lowing trends. 

1. Dependence on the relative-flow parameter p. 
Figure 4 shows plots of P vs NTU at iixed R for 

P = l-4, for approximately 15 plates, and the fol- 
lowing (J, K) configurations : (2,2), (2,3), (2,4), 
(3,3), and (4,4). For a comparative analysis of these 
curves it is convenient to define the ‘even-p-splitting’ 
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FIG. 4. Effectiveness P as a function of NTU for R = 0.5 and 
2.0, for all four possible values of the relative flow parameter 
p and: (a) (J,K) = (2,2), N= 15; (b) (J,K) = (2,3), 
N= 16; (c) (J,K) = (2,4), N= 15; (d) (&A-) = (3,3), 

N= 17; (e} (J,K) = (4,4), N= 15. 
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FIG. 4.-Continued. 

s, = P(p =2)-P@ = 4) (18) 

and the analogous ‘odd-p-splitting’ 

s, = P(p = 3) - P(p = 1). (19) 

We summarize our observations as follows. 

1.1. Even values of p systematically give rise to 
higher effectiveness than odd p values. 

1.2. The even- and odd-p-splittings vanish for 

(J, K) = (2,3) and IV = 16. 
1.3. In the (2,4) case both splittings are quite small. 
1.4. The splittings for the J = K configurations 

(2,2), (3,3), and (4,4) decrease as J increases. 
I .5. s, is always positive in the examples shown. 
1.6. s, is positive for low values of NTU, but, as 

NTU increases, it changes sign. 

We proceed now to discuss these observations. In 
the first place, for J > 1 it is natural to expect that 

overall countercurrent flow (i.e. even values of p), 
gives rise to higher effectiveness than overall parallel 
flow, and this is consistent with observation 1.1 above. 

Observation 1.2 is immediately understood from 

examination of Table 2, which shows that, when N 
is even and (K-J)im is odd, both splittings should 
vanish. 

The smallness of the splittings pointed out in obser- 

vation 1.3 is due to the fact that the (J, K) = (2,4) 
configuration has also an odd value of (K- J)/m, and, 
therefore, the p-splittings are forced to vanish in the 
limit of large N (Table 2). What should be remarked is 
that this asymptotic trend is already visible at N = 15. 

Observation 1.4 can be understood from the fact 

that, for K = J, as J increases, for any given value of 
NTU, even-p configurations approach the pure coun- 
tercurrent geometry, and odd-p ones approach par- 
allel flow. Again, it is remarkable that this large-J 
trend is visible at such low values of J. 

In order to analyse the sign of s, and s,, it is useful to 

introduce into the analysis the countercurrent fraction 
parameter Cp defined as 

Q, = Number of countercurrent plates/N. (20) 

The numerator of this fraction is the number of plates 
for which the adjacent fluid streams flow in opposite 
directions. For any given configuration, the parameter 
4 is easily computed by inspection, and for the asymp- 
totic N -+ M limit we find 

4(J, K) = l/2, for odd (K- J)/m 

$(J, K) = 1/2fm2/2JK, 
for even (K- J)/m, p = 2,3 

$(J, K) = l/2-m212JK, 
for even (K-J)/m, p = 1,4. 

(21) 

It is reasonable to expect that, for the same values 
of J and K, and the same overall relative flow, the 
configurations with higher 4 should have higher 
effectiveness. Comment 1.5 is consistent with this 
expectation, and we found instances in which s, is 
negative with larger 4 values for p = 4 than for p = 2. 
Observation 1.6 also confirms the 4 dominance for 
low NTU values. The change of sign at large NTU is 
explained by the following line of reasoning. 

Consider, for simplicity, the asymptotic model for 



Thermal effectiveness of multipass plate exchangers 1989 

b) 
t”=t 

f---\ ~,____~_____._ - 
T’=, i 

0 C 

t’=O ! 

; 
Ll 

T=i 

C 

t=o 
*____-’ L_--.-J i___*_ 

T”=O 

Ra. 5. Block diagram for the (J, K) = (2,2), overall parallel- 
current configurations, in the limit of large N and NTU: (a) 

for p = 1; (b) for p = 3. 

(J,K) = (2,2), and overall parallel flow (odd p). In 
this limit, the exchanger can he decomposed into two 

prime segments of either parallel-current or counter- 
current type, depending on whether we have p = 1 
or 3, respectively, as shown in Fig. 5. For small NTU, 
the p = 3 case, with (B = 1, is more effective than the 
p = I case, with Cp = 0, as expected. As NTU 
increases, however, the p = 3 case approaches the 
point in which the cold fluid outlet of the first stage is 
warmer than the first stage hot fluid outlet. When this 
happens, reverse heat transfer occurs in the second 
stage of the exchanger, and this conspires against the 
overall effectiveness. In the limit of NTU+ co, we 
find, for R = 1, the extreme result indicated in Fig. 
5(b), in which the second stage completely neutralizes 
the effect of the first one, and the overall effectiveness 
is zero. On the other hand, we observe that, in this 
limit, the p = 1 case of Fig. 5(a) leads to the same 
outlet temperatures for both fluids and, therefore, 
P(p = 1) = 0.5. This demonstrates how degradation 
due to reverse heat transfer may give rise to negative 
values of s,, at large NTU. 

2. Dependence on the number of plates. 
Figure 6 shows the N-dependence of the effec- 

tiveness for some (2,3) arrangements, which we take 
as ilIustrations of trends that can also be found in 
other geometries. The main features observed from 
these plots, and similar ones that we do not have 
enough space to reproduce here, are given below. 

2.1. As expected, the effectiveness for different u 
sequences approaches the same limiting value, as N-P 
Co. 

2.2. The Ndependence of the effectiveness for each 
cr sequence is smooth. If, however, we do not classify 
the geometries with the CT parameter, and consider 
simultaneously all possible N values for given .7, K, 
and p, the effectiveness oscillates as a function of N. 

2.3. The differences between the effectiveness of 
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004723t6 fi b 4 
N 

b) 

.294 

.290 

.288 

,286 

, I 
004723ib Ii b 4 

t-J 

FIG. 6. Effectiveness as a function of the number of plates 
N, using a l/N scale, for (J, Kj = (2,3), p = 2, NTU = 1: 
(a) R = 0.75; (b) R = 3.0. Values belonging to the same o- 
sequences are connected by straight lines. The last calculated 
point is connected by a dashed line to the asymptotic limit. 

sequences of the same J, K, and p, but different u, are 
usually small, and depend mainly on cf, and R. Higher 
effectiveness tends to be associated with larger values 
of Cp, and this is responsible for the larger values of P 
for u = 1 in Fig. 6. In addition, values of R larger 
than K/J tend to favour rr = 2 and depress cr = 3, 
whereas the opposite is true for R < K/J+ 

2.4. The slope of the plots of Fig. 6 at l/N = 0 
measures the rate at which the asymptotic limit is 
approached. The larger the slope is, the larger the 
value of N required to approach the asymptotic limit 
within a given accuracy. In the examples of Fig. 6, 
this limit is approached within 1% for N > 16. 

2.5. Because deviations from the asymptotic Iimit 
are due to end effects, and, as J and K increase, more 
pass boundaries are present, we might expect the slope 
at l/N = 0 to increase for larger values of J and K. 
This is not seen to happen in practice, which may be 
interpreted as an indication that end effects do not 
tend to add coherentfy but, rather, to partially cancel 
each other. 
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6. VARIABLE PROPERTIES AND 

COEFFICIENTS 

As stated in the Introduction, throughout this work 
the heat capacity rates and heat transfer coefficient 
have been assumed to be constant. If this restriction 
is released, the mathematical nature of the problem 
changes in a fundamental way. Because the 
coefficients of the differential equations (4)-(6) are 
functions of the temperature, the problem ceases to 
be linear, and requires an entirely numerical solution. 

Within the present scheme it is possible, however, 
to account in an approximate way for this temperature 
dependence, both in the case of a finite number of 
plates, and in the large-N limit, with the following 
iterative procedure. As a first approximation, an 
initial guess is taken for the temperature-dependent 
parameters, which may, for instance, be assigned the 
values corresponding to the inlet temperatures. After 
the calculation is performed, and the temperatures of 
all streams are known throughout the exchanger, an 
adequate average value is assigned to the parameters 
for each one of the streams, and the process is iterated 
until convergence is achieved. 

7. CONCLUSION 

We have systematically classified the possible PHE 
configurations, and shown two methods for solving 
the thermal problem. One is based on the numerical 
solution of the ‘exact’ equations and, as the number 
of plates increases, it becomes more demanding in 
computer time, memory and precision. The other 
method is valid in the limit of a large number of 
plates, and is extremely fast. In practice, both methods 
complement each other, and when the former becomes 
too cumbersome, the latter is sufficiently accurate for 
practical applications. 

The trends observed in the analysis of the results 
obtained provide the basis for a qualitative under- 
standing of the mechanisms involved. What is prob- 
ably the most important feature detected is the early 
approach of asymptotic behaviour, whereby results 
expected to hold in the large-/ or large-N limits, are 
found to set in at fairly low values of these parameters. 
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EFFICACITE THERMIQUE DES ECHANGEURS A PLAQUES MULTIPASSES 

R&m&-Les arrangements d’echangeur a plaques, avec un nombre constant de courant par passe pour 
chaque fluide et une distribution uniforme de fluide, sont classes en fonction de cinq parametres fon- 
damentaux. Un programme bad sur la diagonalisation dun systeme, d’tquations differentielles lineaires 
est construit pour le calcul numerique de l’efficaciti thermique dun arrangement arbitraire. Un programme 
alternatif est dtveloppe dans la limite d’un grand nombre de plaques. Une analyse comparative des resultats 

est conduite. On discute les tendances de base et on d&gage le comportement asymptotique deja connu. 

THERMISCHER WIRKUNGSGRAD VON MEHRGANGIGEN 
PLATTENWARMETAUSCHERN 

Zuaammenfasaung-Anordnungen von Plattenwarmetauschem mit einer konstanten Zahl von Stromen 
pro Pfad fur jedes Fluid und gleichmlgiger Verteilung werden mit Hilfe von fiinf Grund-Parametem 
eingeteilt. Ein Programm, das auf der Diagonalisierung eines Systems linearer Differentialgleichungen 
beruht, wird zur numerischen Berechnung des therm&hen Wirkungsgrades einer beliebigen Anordnung 
erstellt. Ein Alternativprogramm wird fiir eine groge Anzahl von Platten entwickelt. Eine vergleichende 
Analyse der erhaltenen Ergebnisse wird durchgefiihrt. Grundlegende Trends werden diskutiert und das 

friihe Einsetzen des asymptotischen Verhaltens wird herausgearbeitet. 
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TEI-IJIOBM 3DDEKTMBHOCTb MHOI-OXOAOBbIX I-UlACTMH~ATbIX 
TEWIOOEMEHHHKOB 

AmmTIInacruraTsIe ~nnoo6wemnnr~ c IWXTO~IWUM YHcJIOM IaHaJIOB nlnl raZr(oft *E,uKocTki 
H on~opon~bm ee pacnpenenemiehi macc~&iu~pym~cn Ha ecHoBe mm oc~o~~bm napabmpoB.&ma 

YHcneHHoro pacvnaTennoeol *KTHBH~CTH~~~KWOX~H~~~ Tennoo6r+fe~aco3niwanporpama, 

~OBaHHanHanHarOHanA3arurHCACTeMblnHHe~HblXIUI~~~HMypaBHe~.CO3AaHBap~~ 

nporpa~~bl~nnpe~enbeo 6onbmoro PHcna nnacTuIi. ~poBeneHcpaBHIfTeJIbHslli arfami3 nonyneHHbIx 
~3)'nbTaTOB.O6C)';scnatoTCS 0CHOBHL.E TeHlJeHIIEiH EI OTMePeHO 6Onee PinHee ITpORBneHHe aCHMIlTOTH- 
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